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Summary. A microstructural constitutive theory of ER suspensions was formulated in this investigation.

The framework was based on the internal variable theory and the mechanism analysis. The ER suspension

consists of fine particles with high dielectric constant and the supporting fluid. Under the action of the

electric field, the polarized particles will aggregate together to form the chain-like structures along the

direction of the electric field. As the size and orientation of the particle aggregates are volatile, and they

adjust according to the applied electric field and strain rate, the energy conservation equation and the force

equilibrium equation were thus established to determine the orientation and size of the aggregates. Fol-

lowing that, a three-dimensional, explicit form of the constitutive equation was derived based on the

interaction energy and the dissipation function of the system. The response of the system under the action

of a simple shearing load was considered and discussed in detail. It is found that the shear-thinning

viscosity of an ER suspension is well approximated by the power-law / ðMnÞ�0:82.

1 Introduction

An electrorheological fluid (ER) consists of a suspension of the dielectric particles in a liquid of

low dielectric constant and low viscosity. Its apparent viscosity increases dramatically in the

presence of an applied electric field. The phenomenon is reversible. Upon electric field cutoff,

the system almost immediately resumes its original liquid state. These novel properties make

ER fluids very attractive for many futuristic technologies. Recently they are also used as

the components in some smart structures. It is now clear that the underlying mechanism for the

transition is that the polarized particles in ER fluid will form the chain structures along

the direction of the applied electric field. A lot of work has been done to understand the

mechanism of the chain formation [22], interesting readers are referred to the comprehensive

review paper by Parthasarathy and Klingenberg [17].

The macroscopic response of an ER suspension depends strongly on the applied electric field

and its microstructural parameters, such as the volume fraction and dielectric constants of the

particles. In order to reveal the relationship between the macroscopic response of an ER system

and its microstructures, a constitutive equation should be established. This equation can also

provide engineers the necessary tool to carry out the finite element analysis for a structure with

ER systems as its components. Many researchers have done some fruitful investigations on the

constitutive relation under the simple shear load. To name a few, Halsey et al. [9], [10] proposed

a stimulating model to predict the shear-thinning viscosity of the fluid. Based on the continuum

concept of unsymmetric stress state, Rosensweig [19] developed an efficient method to obtain
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the general expressions for the yielding stress of magnetorheological fluid. Klingenberg and

Zukoski [14] first considered a model ER suspension with an idealized structure. They calcu-

lated the elastic behavior under simple shearing deformation. Bonnecaze and Brady [1], [2]

developed a molecular dynamics-like simulation method to efficiently compute the electrostatic

interactions in suspensions with arbitray particle configuration under the action of an electri

field and a flow field. Ginder and Ceccio [7], and Conrad et al. [5] carried out extensive

theoretical and experimental investigation on the yield strength of ER systems. Based on the

energy consideration, Bossis et al. [13] predicted the yield stress in magnetorheological and

electrorheological fluids. Martin and Odinek [16] developed a non-linear rheological model of

an ER system by considering the response of a fragmenting and aggregating particle chain to

the prevailing hydrodynamic and electrostatic forces.

In fact, the response of an ER suspension is quite different in the different stages of the

applied strain rate. For quasi-static loading, the chain structure will not break down when the

strain is small. The particles will move a very limited distance in response to the applied strain.

Under such kind of loading, the stress is related with the applied strain, not with the strain rate.

The stress-strain relations obtained by many researches are the most suitable for this stage. For

dynamic loading, or when the strain rate is high, the chain structure becomes volatile whose size

adjusts in response to the flow, fragmenting and aggregating. As the shear strain rate increases

or decreases, its orientation also adjusts in response to the flow. Such microstructural evolution

will induce further energy dissipation, and constitute the main reason for the shear-thinning

phenomena. In this stage of loading, the stress is related with the strain rate, instead of the

strain. As was pointed out by Jordan et al. [12], [13], to develop the constitutive equation for

ER fluid, two approaches can be followed. Namely, one is based on detailed microstructural

electrohydrodynamics, while the other is based on continuum mechanics. The former has been

successful in elucidating interrelations of system variables, but it has failed to generate closed

form constitutive equations. Continumm mechanics based models, on the other hand, lack

detailed microstructural information. In the current investigation, we attempt to establish a

three-dimensional constitutive equation based on the internal variable theory [18], [23]. Starting

with the microstructural consideration, the interaction energy and the dissipated energy under

the action of an electric field and a flow field will be derived first. Then, based on the ellipsoidal

aggregate assumption, the evolution equations of the internal variables, such as the orientation

and size of the aggregates will be established. At last, the three-dimensional constitutive relation

is obtained in the framework of the internal variable theory. The mechanism-based constituitve

model obtained in the current research not only provides the engineer with the closed form

equation to run FEM, but also establishes the relationship between the macroscopic response

and their microstructures of ER suspensions.

2 The interaction energy of an ER suspension

containing the aggregates of polarized particles

It is a well-known fact that the rheology of ER suspensions at low to moderate volume

fractions is due to the aggregation of particles into volatile chainlike structures whose size and

orientation adjust in response to the flow and applied electric field. The electrodes as the

boundary of the system have a very strong image effect on the aggregation process of polarized

particles when the size of the aggregates approaches to the distance between the electrodes. In

establishing the microstructural constitutive relation of a material, a constitutive element is
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usually taken as the subject of study. From a macroscopic view, the element should be small

enough to represent the behavior of one point in the material, whereas from a microscopic view

the element should be large enough to contain sufficient microstructural information. There-

fore, an ER suspension confined by the electrodes can be considered to be piled up by a large

number of such element, each of which may have different response due to the effect of non-

uniform applied electric and flow field. Thus in establishing the constitutive relation of the

material, the image effect of the electrodes should not be taken into consideration. The material

element we consider is assumed as a suspension of the spheroidal aggregates of polarized

particles in a fluid. This assumption will simplify our analysis since the polarization is constant

inside an ellipsoid placed in a constant external field. Similar assumptions can be easily found in

literature, such as Halsey et al. [9], Bossis et al. [3], etc. The element is subjected to an applied

electric field E
*

0 along the z-direction, and a general flow velocity field V
*

0. If the size of a

spheroidal aggregate is denoted by a1 ¼ a;a2 ¼ a3 ¼ c, it’s volume is given by va ¼ 4
3
pac2. In a

unit volume of the ER suspension with the volume fraction of / of the particles, the number of

the aggregates in a unit volume is given by N ¼ /=va. The aggregate consists of the dielectric

particles with the isotropic, relative permittivity ap, whereas the fluid has a lower relative

dielectric permittivity af . When the suspension system is subjected to an applied electric field,

the interaction depolarization energy due to the introduction of the dielectric aggregates can be

obtained after determining the distribution of the electric field. In what follows, we will derive

the electrostatic energy in a unit volume.

We first consider a single prolate spheroid aggregate in the fluid. To incorporate the effect of

the other aggregates, the concept of the effective field E
*

m is introduced, which is defined as the

volume average field in the surrounding fluid. In the local coordinate system where X, Y, and Z

axes are connected with the semi-axes a1;a2;a3ða2 ¼ a3 ¼ cÞ of the spheroid, the electric field

inside the aggregate is related with the effective field similar to single dielectric inclusion

problem [15], [16],

Ei
x ¼

Em
x

1þ ðap=af � 1Þnx

¼ AxEm
x ;

Ei
y ¼

Em
y

1þ ðap=af � 1Þny

¼ AyEm
y ;

Ei
z ¼

Em
z

1þ ðap=af � 1Þnz

¼ AzEm
z ;

ð1Þ

where nx ¼ 1�b2

2b3 ðln 1þb
1�b� 2bÞ;nz ¼ ny ¼ 1

2
ð1� nxÞ, and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2=a2
p

:

If the applied electric field is denoted by E
*

0, it should be equal to the volume average of the

electric field as follows:

ð1� /ÞE
*

m þ / E
*

i ¼ E
*

0: ð2Þ

Substitution of Eq. (1) into Eq. (2) gives the effective electric field as follows:

Em
x ¼ ð1� /þ /AxÞ�1

E0
x;

Em
y ¼ ð1� /þ /AyÞ�1

E0
y;

Em
z ¼ ð1� /þ /AzÞ�1

E0
z:

ð3Þ
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The total induced dipole moment in a spheroid aggregate is thus given by

Px ¼ vaAxðap � af Þa0ð1� /þ /AxÞ�1
E0

x;

Py ¼ vaAyðap � af Þa0ð1� /þ /AyÞ�1
E0

y;

Pz ¼ vaAzðap � af Þa0ð1� /þ /AzÞ�1
E0

z;

ð4Þ

where a0 is the dielectric permittivity of the vacuum, and va is the volume of the ellipsoidal

aggregate.

The interaction energy of a single aggregate is defined as the electrostatic energy change due

to the introduction of one aggregate into the fluid, and is given by [15]

u ¼ � 1

2
E
*

m � P
*

¼ � 1

2
vaa0ðap � af Þ½Axð1� /þ /AxÞ�2ÞðE0

xÞ
2

þ Ayð1� /þ /AyÞ�2ðE0
yÞ

2 þ Azð1þ /þ /AzÞ�2ðE0
zÞ

2�: ð5Þ

The energy of the ER suspension can be considered to consist to two parts: one is the bulk

depolarization energy of the dielectric aggregates, the other part is the surface energy of the

aggregates. As pointed out by Halsey et al. [9], the surface energy arises also from the dipole

interaction, but it should depend on the lattice constant of the aggregates. Bossis et al. [4] also

pointed out that the origin of the surface energy was the difference between the local field on a

particle situated on the surface of an aggregate relatively to the local field on a particle situated

inside the aggregate. As a result, the surface energy is much smaller than the bulk depolar-

ization energy. To simplify the analysis, we neglect the surface energy in this paper as the

majority of previous investigations did.

In a unit volume there are N aggregates, therefore the total interaction energy can be written

as

W ¼ Nu

¼ �/
2
ðap � af Þa0½Axð1� /þ /AxÞ�2ðE0

xÞ
2

þ Ayð1� /þ /AyÞ�2ðE0
yÞ

2 þ Azð1� /þ /AzÞ�2ðE0
zÞ

2�: ð6Þ

For our problem, the applied electric field E0 is along the z-axis of the global coordinate

system. In the local coordinate system, (X, Y, Z)axes are connected with the semi-axes

a1;a2;a3, which can be specified as follows: X is the symmetric axis, and Z lies in the (x, y)

plane of the global coordinate system. Thus, the components of the applied electric field in the

local coordinate system can be expressed in the form as

E0
x

E0
y

E0
z

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

sinhcosu sinhsinu cosh

�coshcosu �coshsinu sinh

sinh �cosu 0

2

6

6

4

3

7

7

5

0

0

E0

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; ð7Þ

where h is the angle between the symmetric axes X and z, and u is the angle between the

projection of X onto the plane (x; y) and axis x.

By substituting Eq. (7) into Eq. (6), and noting Ay ¼ Az for spheroidal aggregates, one

obtains the interaction energy
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W ¼ �/
2
ðap � af Þa0ðE0Þ2½Axð1� /þ /AxÞ�2cos2hþ Ayð1� /þ /AyÞ�2sin2h�: ð8Þ

It is very clear that the specific interaction energy of the suspension system depends on the

applied electric field, the orientation, size, and volume fraction of the aggregates. Further, the

interaction energy is not the linear function of the volume fraction of the particles since we

introduced the concept of the effective field to consider the interaction effects among the

aggregates.

3 The dissipation potential of ER suspensions subjected to microstructure evolution

To establish the constitutive relation of the suspensions, one needs first to derive the dissipation

potential corresponding to the microstructural evolution. The dissipation potential is defined as

the dissipated energy in unit volume and unit time. In the current model, the suspension

element is subjected to an electric field E
*

0 along the z-direction, and a linear flow velocity field

V
*

0, (i.e., a constant strain rate field). The orientation of the aggregates changes with the

velocity _hh; _uu. The size of the aggregates also adjusts in response to the flow and electric field. If

the translation velocity of the ith aggregate center is denoted as Ui

*

, which is assumed to be the

same as the flow velocity of the fluid at that point, the velocity of the fluid adhering to the

particle surfaces can be written as follows:

Vi

*

¼ Ui

*

þwi

* � ri

*
; on each Si; ð9Þ

where wi

*
refers to the angular velocity of the ith aggregate, which can be expressed in terms of

_hh; _uu; ri

*
denotes the position vector drawn from the center of the aggregate, and Si is the surface

of the ith aggregate. Without the aggregates, the flow field of the fluid is given by

V
*

0
i ¼ Ui

*

þ~cc0 � ri

*
; ð10Þ

where ~cc0 is the applied strain rate tensor.

For quasi-static creeping flows in the absence of external body forces, the kinetic energy of the

fluid-particle system is negligible, and the potential energy of the fluid remains constant. Ac-

cordingly, the rate U at which energy is being dissipated within the confines of the apparatus is

equal to the rate of work done by the stresses over all the surfaces bounding the fluid. In general,

this overall surface includes both the apparatus boundaries and the particle surfaces. Hence,

U ¼
Z Z

S0þ
P

Sp

Y

ij

Vinj ds; ð11Þ

where S0;Sp are the surface of the material element and the spheroid aggregates, Vi is the

velocity vector of the fluid on the surface, nj is the normal vector of the surface, which is

directed outward the fluid, and
Q

ij is the stress tensor. For Newtonian supporting fluids, it can

be expressed in the form:
Y

ij

¼ �pdij þ lð@iVj þ @jViÞ; ð12Þ

in which p is the hydrostatic pressure, and l is the shear viscosity of the fluid.

By using the condition Vi ¼ V0
i on the element surface S0, Eq. (11) can be expressed in the

form:

General constitutive equation of an ER suspension 103



U ¼
Z Z

S0þRSp

Y

ij

Vinj ds

¼
Z Z

S0þRSp

Y

ij

V0
i nj dsþ

Z Z

Rsp

Y

ij

ðVi � V0
i Þnj ds: ð13Þ

By introducing the stress tensor
Q0

ij corresponding to the applied flow field V0
i in the homo-

geneous fluid without particles, the reciprocal theorem [11] gives

Z Z

S0þRSp

Y

ij

V0
i nj ds ¼

Z Z

S0þRSp

Y

0

ij

Vinj ds: ð14Þ

The above relationship is used to replace the first integral in Eq. (13), and by using the

boundary condition again, Eq. (13) becomes

U ¼
Z Z

S0þRSp

Y

ij

Vinj ds

¼
Z Z

S0

Y

0

ij

V0
i nj dsþ

Z Z

RSp

Y

0

ij

Vinj dsþ
Z Z

RSp

Y

ij

ðVi � V0
i Þnj ds: ð15Þ

The second integral vanishes when the inertia effects and body force are absent since @j

Q0
ij ¼ 0.

Therefore, the energy dissipation rate can be expressed in the form as

U ¼
Z Z

S0

Y

0

ij

V0
i nj dsþ

Z Z

RSp

Y

ij

ðVi � V0
i Þnj ds: ð16Þ

Substituting Eqs. (9), (10) and (12) into Eq. (16) and assuming that the pressure at the

boundary of the element is zero, one can derive

U ¼
Z Z

S0

Y

0

ij

V0
i nj dsþ

Z Z

RSp

Y

ij

ðVi � V0
i Þnj ds

¼ 2lc0
ijc

0
ij þ NDikc

0
ik � NDikeijkxj; ð17Þ

where eijk is the permutation symbol, having the following properties: it is zero if any two of

the three indices are equal; it has the value +1 if (i, j, k) is an even cyclic permutation of

the integers (1, 2, 3); it has the value �1 if (i, j, k) is an odd cyclic permutation of the intergers

(1, 2, 3). And

Dik ¼ �
Z Z

Sp

Y

ij

njxk ds: ð18Þ

In deriving Eq. (17), we used
Q0

ij ¼ 2lc0
ij;V

0
i ¼ c0

ijxj on the surface of the suspension element.

The angular velocity of the aggregate can be expressed in the following form:

x
* ¼ �sinu _hh i

*

þcosu _hh j
*

þ _uu k
*
: ð19Þ

The tensor Dij created by the linear ambient flow field c0
ij and the rotational movement of the

aggregate xi is derived in Appendix I, taking the form:

Dij ¼ Mijklc
0
kl þ Hijkxk; ð20Þ
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where the tensors Mijkl;Hijk, depending only on the orientation and size of the spheroid

aggregates, are shown in Appendix I. Substitution of Eq. (20) into Eq. (17) gives

U ¼ 2lc0
ijc

0
ij þ NDikc

0
ik � NDikeijkxj

¼ 2lc0
ijc

0
ij þ NMijabc

0
ijc

0
ab þ NðHabk �MijabeikjÞc0

abxk � NHijaeikjxkxa: ð21Þ

From Eq. (21), one knows that the dissipation potential is a quadratic form of the rates c0
ij;xk.

With the aid of the interaction energy given in Eq. (8) and the dissipation potential given in

Eq. (21), we can not only establish the general constitutive relation of the system, but also

derive the governing equations related to the microstructural evolution _hh; _//.

4 Constitutive relation of an ER suspension

4.1 General formulation of the internal variable theory

It is well-known fact that the thermodynamic state of an ER suspension at a given time is not

only a function of the instantaneous value of the strain rate c0
ij, but also depends on the

previous history of c0
ij. The investigation of the thermodynamic state may be dealt with in

various manners. One effective method is the ‘‘internal variable theory’’ [18], [23]. To com-

pletely define a thermodynamic state of a suspension, one needs to introduce some internal

variables that describe the microstructural change of the material during loading, besides

identifying the instantaneous strain rate. In such way, the dependence of the material response

on loading history can be replaced by a dependence on what it has produced. Namely, the

current pattern of structural arrangement on the microscale of the material element is repre-

sented by the current value of internal variables. When the internal variables are fixed, the

response of the material only depends on the instantaneous value of the strain rate c0
ij. But

generally speaking, the values of the internal variables depend on the loading history. The

internal variable theory is based on the fundamental principle of thermodynamics [23]. In its

framework, one can not only establish the relation between the stress and strain, but also derive

the evolution equation of the microstructures. Consider a unit volume element of an ER

suspension; its state variables are denoted as the strain tensor gij, absolute temperature T and a

group of internal variables #k. In other words, the variables gij; #k and T can give a complete

description of the state of the system. The first fundamental law of thermodynamics can be

expressed in the following form:

dW ¼ dU � dQ; ð22Þ

where U is the internal energy of the system, dW is the elementary work done on the system and

dQ is the heat supply to the system.

The second fundamental law of thermodynamics states that there exists a state function

Sðgij; #k;TÞ, called entropy, such that

TdS � dQ: ð23Þ

If (23) holds with the equality sign, the process is referred to as reversible, otherwise as irre-

versible. The entropy can be written in the following form:

dS ¼ dðrÞSþ dðiÞS; ð24Þ

where
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dðrÞS ¼ dQ

T
ð25Þ

is the reversible increment of S, called the entropy supply from outside, whereas

dðiÞS � 0 ð26Þ

is the irreversible increment, referred to the entropy production inside the system. The com-

bination of (22), (23) and (24) leads to

dW ¼ dU � dQ ¼ dU � TdðrÞS ¼ dU � TdSþ TdðiÞS: ð27Þ

If the applied stress field on the material element is denoted as sij, the elementary work done on

the system can be written as

dW ¼ sijdgij: ð28Þ

On account of the fact the U and S are state functions, Eq. (28) can be replaced by the relation

sijdgij ¼
@U

@gij

� T
@S

@gij

� �

dgij þ
@U

@#k

� T
@S

@#k

� �

d#k þ
@U

@T
� T

@S

@T

� �

dT þ TdðiÞS: ð29Þ

For the pure heating case, (29) is reduced to

@U

@T
� T

@S

@T

� �

dT þ TdðiÞS ¼ 0: ð30Þ

The second term is nonnegative, whereas the quantity inside the parentheses is a state function

and hence is independent of dT. Since (30) must hold for both positive and negative values of

dT, we have

@U

@T
� T

@S

@T
¼ 0: ð31Þ

It is noted that the above result is generally valid and independent of the type of process even

though we have obtained it by considering a special process. Equation (29) can be simplified if

we introduced another state function, the so-called free energy of the system, defined by

N ¼ U � TS: ð32Þ

Then

sijdgij ¼
@N
@gij

dgij þ
@N
@#k

d#k þ TdðiÞS: ð33Þ

As mentioned by Ziegler [23], the term TdðiÞS has the form of an elementary work, and can be

expressed in the following form:

TdðiÞS ¼ Aijdgij þ Bkd#k: ð34Þ

Substitution of Eq. (34) into Eq. (33) gives

sijdgij ¼
@N
@gij

þ Aij

� �

dgij þ
@N
@#k

þ Bk

� �

d#k: ð35Þ

Since gij; #k are independent state variables, the above equation implies

sij ¼
@N
@gij

þ Aij; ð36Þ

@N
@#k

þ Bk ¼ 0: ð37Þ
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In fact, Eq. (36) is the constitutive relation of the material, and Eq. (37) can be used to

determine the values of the internal variables.

We now rewrite Eq. (34) by replacing the differentials by time derivatives as follows:

U ¼ Aijc
0
ij þ Bk

_##k; ð38Þ

where U is the dissipation function which is the rate of work done by the dissipative forces.

Equation (38) cannot determine the dissipative force, the tensor Aij and vector Bk even if we

know the dissipation function. To determine Aij and Bk, we introduce the following orthogo-

nality condition: the dissipative force corresponding to the velocity c0
ij or

_##k is orthogonal to the

dissipation surface U ¼ U0 in the end point. Therefore, one can obtain

Aij ¼ k1
@U

@c0
ij

;

Bk ¼ k2
@U
@#k

;

ð39Þ

where k1; k2 are proportional factors determined on account of (38) by

k1 ¼
@U

@c0
ij

c0
ij

 !�1

U;

k2 ¼
@U
@#k

#k

� ��1

U:

ð40Þ

Since we have derived that U is a quadratic function of the velocities, Eq. (40) yields

k1 ¼ k2 ¼
1

2
: ð41Þ

As the strain and strain rate are symmetric tensors, substitution of Eqs. (39) and (41) into

Eqs. (36) and (37) yields

sij ¼
1

2

@N
@gij

þ @N
@gji

� �

þ 1

4

@U

@c0
ij

þ @U

@c0
ji

 !

; ð42Þ

@N
@#k

þ 1

2

@U

@ _#k#k

¼ 0: ð43Þ

It is worth to note that as discussed by Ziegler [23] the orthogonality condition is equivalent

to the principle of maximal dissipation rate.

4.2 Constitutive equation

4.2.1 The constitutive equation of an ER suspension before yielding

Experimental data reveal that when the applied shear stress is smaller than the yielding strength

of an ER suspension, the ER suspension behaves like an ordinary solid material, its strain

increases almost linearly with the applied stress. An identifying characteristic of ER suspen-

sions under such a static condition is that upon application of an electric field the particles align

into a chain-like structure along the direction of the field. Under the action of an applied shear

loading, the fibril aggregates of the particles will keep intact, but they will rotate slightly as

Shown in Fig. 1. In this stage, we further assume that there is no slipping between the electrodes
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and the induced ER structures. Under such conditions, the tilt angle of the droplets is directly

related with the applied strain. If the applied shear strain is g13 ¼ g31, one can find

2g13 ¼ g13 þ g31 ¼ tgh � h: ð44Þ

By substituting it into Eq. (8), the interaction energy of the system is given as follows:

W ¼ �/
2
ðap � af Þa0ðE0Þ2 Axð1� /þ /AxÞ�2

n

�½Axð1� /þ /AxÞ�2 � Ayð1� /þ /AyÞ�2�ðg13 þ g31Þ2
o

: ð45Þ

For an isothermal process, one can write

@N
@gij

¼ @W
@gij

: ð46Þ

The shear stress can be derived by using Eq. (42) and neglecting the dissipation terms as

follows:

s13 ¼ 2G�g13 ¼
1

2

@W
@g13

þ @W
@g31

� �

¼ 2/a0ðap � af ÞðE0Þ2½Axð1� /þ /AxÞ�2 � Ayð1� /þ /AyÞ�2�g13; ð47Þ

where the effective shear modulus is given by

G� ¼ /a0ðap � af ÞðE0Þ2½Axð1� /þ /AxÞ�2 � Ayð1� /þ /AyÞ�2�: ð48:1Þ

If the dielectric permittivity of the particles does not approach infinity, i.e., they are not

conductors, the fibril aggregates can be assumed to be cylindrical dielectrics, the depolarizing

factors are nx ¼ 0;ny ¼ nz ¼ 1
2
. Therefore, the effective shear modulus is given by

G� ¼ /a0ðap � af ÞðE0Þ2 1� 2af

ap þ af
ð1� /

ap � af

ap þ af
Þ�2

� �

: ð48:2Þ

If the dielectric permittivity of the particles does approach infinity, the aggregates cannot be

assumed to be infinitely long cylinders as assumed in deriving Eq. (48.2), in such case,

Eq. (48.1) should also give reasonable results.

From Eq. (47), it is very clear that at the initial stage the ER suspensions behave as an

ordinary elastic material with the shear modulus given by Eq. (48). However, it should be

mentioned that this result is based on the assumption that the tilt angle is very small, as given

by Eq. (44), and the droplets will not slip on the electrodes. When the applied shear strain

+ + + + + + + + +

– – – – – – – –

E

Fig. 1. Schematic of ER structure at
the initial stage
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reaches its critical value gc
13, the droplets cannot keep intact. The corresponding shear stress

given by Eq. (47) is the static yielding stress of the ER system.

The experimental data obtained by Ginder and Davis [18] are used to verify our theoretical

prediction. The model fluids utilized in their study were composed of barium titanate particles

having the relative permittivity ap ¼ 2000, suspended at volume fractions / ¼ 0:2 in dodecane

having the relative permittivity af ¼ 2. The permittivity of free space is a0 ¼ 8:85417�
10�12F=m. The shear modulus versus the applied electric field is shown in Fig. 2. The predicted

shear modulus is slightly lower than the experimental data in the barium titanate system. This

departure may be due to the strong image effect of the electrodes.

4.2.2 The constitutive relation after yielding

In the dynamic regime after yielding, the behavior of an ER suspension is often approximated

by a Bingham solid, i.e.,

s ¼ sy þ l�c0; ð49Þ

where sy is the yielding stress of the system, and l� is the viscosity of the suspension. Exper-

imental data revealed that most ER suspensions showed a shear-thinning viscocity, i.e. the

viscosity of the suspension decreases with increasing shear rate. Klingenberg and Zukoski [14]

suggested that this shear-thinning behavior was due to the formation of condensed boundary

layers near the electrodes, so that the velocity gradients appeared only on a portion of the

sample. Halsey et al. [9], [10] assumed that the size and orientation of the aggregates would

adjust with the flow field, and predicted that the shear-thinning effect was due to the bulk

properties of the fluid. Shulman et al. [20] considered the similar problem for magnetorhe-

ological suspensions.

In this paper, the size parameters, a and c, and the orientation of the aggregates, h and u, are
denoted as the internal variables of the system. When they are fixed, the material becomes an

ordinary suspension. That means, if the internal variables are given at an instant time, the

response of the system depends only on the instantaneous value of the strain rate, not on its

history. In fact, the effect of the loading history has been considered by the values of the

Theoretical prediction by equation (47)

Experimental data
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Fig. 2. The shear modulus versus the applied electric field
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internal variables. Furthermore we do not consider the existence of currents or of interfacial

polarization due to a nonzero conductivity of the solid or of the liquid phase. These conditions

apply principally to the category of ER fluids based on a large electronic polarizability of the

constituent particles and acted on by electric fields whose frequency is high enough to neglect

ionic polarization and charge accumulation on the electrodes. Substituting Eq. (21) into

Eq. (42), we have

smn ¼ sy
mn þ

1

2

@W
@gmn

þ @W
@gnm

� �

þ 1

4

@U
@c0

mn

þ @U
@c0

nm

� �

¼ sy
mn þ 2lc0

mn þ
1

4
NðMmnab þMnmab þMabmn þMabnmÞc0

ab

þ 1

4
N½Hmnk þ Hnmk � ðMijmn þMijnmÞeikj�xk; ð50Þ

where sy
mn is the static yielding stress. In deriving Eq. (50), one should notice that the inter-

action energy is independent of the applied strain in the dynamic regime. Once the suspension

reaches the steady state where the size and orientation of the aggregates do not vary with time

any more, the last term in Eq. (50) becomes zero, therefore,

smn ¼ sy
mn þ 2lc0

mn þ
1

4
NðMmnab þMnmab þMabmn þMabnmÞc0

ab

¼ sy
mn þ 2lc0

mn þ / �MMmnabc
0
ab; ð51Þ

where 16
3

pac2 �MMmnab ¼ Mmnab þMnmab þMabmn þMabnm;/ is the volume fraction of the par-

ticles.

4.2.3 Determination of the internal variables h;u;a; c

Since the tensors Mijkl;Hija are functions of the size and orientation of aggregates, one needs

first to determine how these internal variables change with the external condition. By using

Eq. (43), the evolution equations for _hh; _// are derived as

@W
@h
¼ � 1

2

@U

@ _hh
; ð52Þ

@W
@u
¼ � 1

2

@U
@ _uu

: ð53Þ

Equations (52) and (53) jointly give the first-order differential equations system which can be

used to determine hðtÞ;uðtÞ under the given initial condition, the applied strain rate c0
ij and the

electric field. By using Eq. (8), we can have

@W
@h
¼ �/

2
ðap � af Þa0ðE0Þ2sin2h½Ayð1� /þ /AyÞ�2 � Axð1� /þ /AxÞ�2�;

@W
@u
¼ 0:

ð54Þ

And using Eq. (21) and Eq. (19), one can obtain

@U

@ _hh
¼ KðhÞab c0

ab þ DðhÞk xk;

@U
@ _uu
¼ KðuÞab c0

ab þ DðuÞk xk;

ð55Þ
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where

KðhÞab ¼ NcosuðHab2 �Mijabei2jÞ � NsinuðHab1 �Mijabei1jÞ;

KðuÞab ¼ NðHab3 �Mijabei3jÞ;

DðhÞk ¼ NsinuðHij1eikj þ Hijkei1jÞ � NcosuðHij2eikj þ Hijkei2jÞ;

DðuÞk ¼ �NðHij3eijk þ Hijkei3jÞ:

ð56Þ

Substituting Eqs. (54) and (55) into Eqs. (52) and (53), the first-order differential equations for

h;u are thus established as

ðDðuÞ1 sinu� DðuÞ2 cosuÞ _hh� DðuÞ3 _uu� KðuÞab c0
ab ¼ 2

@W
@u

;

ðDðhÞ1 sinu� DðhÞ2 cosuÞ _hh� DðhÞ3 _uu� KðhÞab c0
ab ¼ 2

@W
@h

:

ð57Þ

As we discussed before, one needs to solve the differential equation (57) for a given loading

history to determine the value of the internal variables.

To derive the equilibrium size of the spheroidal aggregate, Halsey [9] divided the polarization

energy into two parts, the first is the depolarization energy as given by Eq. (8), and the second

part is the surface energy of the droplet. Balancing these two effects, he obtained the depen-

dence of the size on the Mason number. As mentioned by Halsey [10], the surface tension is a

somewhat subtle effect, it also arises from the dipolar interactions as the bulk depolarization

energy. The surface energy is specially a dipolar lattice effect. In our formulation, by consid-

ering that every particle attached to the aggregates should keep in equilibrium under the action

of the hydrodynamic force and electrostatic force, it seems more appropriate to establish the

force equilibrium equation to determine the length of the aggregate. Consider a spheroidal

aggregate in the ER suspension, on the tip of it, a spherical particle exists as shown in Fig. 3.

When the system reaches its steady state, all the forces on particles in the aggregates should

keep in equilibrium, i.e., the electrostatic force and the hydrodynamic force acting on the

particle should be balanced with each other. For a small spherical particle, we can assume

the local electric field E
*

e acting on it is uniform. Therefore, the electric dipole moment of the

dielectric particle can be determined by using Eq. (4) with nx ¼ ny ¼ nz ¼ 1=3 for a spherical

particle as follows:

P
*

¼ Ps E
*

e; ð58Þ

where

Ps ¼
4paf ðap � af Þ

ap þ 2af
a0r3

0 ð59Þ

and r0 is the radius of the particle. The electrostatic force on the particle can be obtained by

calculating the external force on the electric dipole sitting at the center of the particle as follows:

F
*

eðaþ r0; 0; 0Þ ¼ r
*

ðP
*

�E
*

eÞ ¼ Psr
*
�

ðEe
xÞ

2 þ ðEe
yÞ

2 þ ðEe
zÞ

2�
�

�

X¼aþr0;Y¼Z¼0
; ð60Þ

in which the local electric field outside the spheroidal dielectrics is given in Appendix II.

To determine the hydrodynamic force acting on the particle, we need to derive the local fluid

velocity V
*

L around the particle, which is given in Appendix III. The hydrodynamic force on the

particle is given by the Stokes resistance
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F
*

hðaþ r0; 0; 0Þ ¼ 6plr0 V
*

Lðaþ r0; 0; 0Þ: ð61Þ

Generally speaking, the length of the aggregates is very sensitive to the applied electric field and

strain rate. Whereas their perpendicular size is comparatively stable. Therefore we can fix the

size parameter c by balancing the force along the symmetric axis X to determine the length:

Fe
Xðaþ r0; 0; 0Þ þ Fh

Xðaþ r0; 0; 0Þ ¼ 0: ð62Þ

In fact, to obtain the constitutive relation given in Eq. (51), we need to know the aspect ratio

a/c only. Through the calculation, it is found that the aspect ratio of the aggregates is inde-

pendent of the selected size c. If one considers that the hydrodynamic forces are transmitted

from one particle to the other through lubrication zones between the particles, the maximum

hydrodynamic force between the particles occurs at the center of the aggregate.

By solving the simultaneous equations (57) and (62), the internal variables a; c; h;u can be

obtained as functions of the applied strain rate and the electric field. When the system reaches

the steady state, _hh; _uu become zero. After solving a; c; h;u; and substituting these values into the

expression of Mijkl, then with Eq. (51) the nonlinear constitutive relation is thus established.

5 The constitutive equation of an ER suspension under simple shear loading

As an example in a special case, in this section we focus our attention on the simple shear

loading condition. The applied strain rate is c0
13 ¼ c0

31. Since the symmetry axis is in the x-z-

plane, one can write u ¼ 0, while the unit directional vector d
*

along the symmetry axis is

expressed in the form of

d
*
¼ fsinh; 0; coshg: ð63Þ

By substituting Eq. (63) into the expressions of Mijkl;Hijk in Eqs. (A2) and (A6), then further

into Eq. (57), it is found that

DðuÞ3 _uu ¼ 0; ð64Þ

Y

z

X

x

Fig. 3. Schematic of the interactions

between the spheroidal droplet and the
particle
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DðhÞ2
_hh ¼ 12pl/YH a

c

	 
2

c0
13cos2hþ /a0ðap � af ÞðE0Þ2½Ayð1� /þ /AyÞ�2

� Axð1� /þ /AxÞ�2�sin2h ¼ Gcos2hþ Fsin2h; ð65Þ

where

F ¼ /ðap � af Þa0ðE0Þ2½Ayð1� /þ /AyÞ�2 � Axð1� /þ /AxÞ�2�;

G ¼ 12pl/YHc0
13

a

c

	 
2

;

DðhÞ2 ¼ 8p/l
a

c

	 
2

YC;

ð66Þ

and YH ;YC are determined by Eqs. (A4) and (A7).

Equation (64) means that for such a shear loading the symmetry axis of the aggregate rotates

only in the plane xoz if initially u ¼ 0. Equation (65) gives the solution of the rotational angle

as a function of time t for a given electric field E0 and shear strain rate field c0
13 as follows:

tgh ¼ 1

G
½F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ F2
p

tanhðvÞ�;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ F2
p

DðhÞ2

tþ arctanh
�F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ F2
p :

ð67Þ

When time t approaches infinity, v!1; tanhðvÞ ! 1. Therefore the tilt angle reaches the

steady value for the given condition, which can be determined by setting _hh ¼ 0, or

tg2heq ¼ �
G

F
: ð68Þ

The rotational angle as a function of non-dimensional time t� ¼ tc13 for different Mason

number Mn which gives the ratio of hydrodynamic force to polarization force

Mn ¼ lc13=½a0ðap � af ÞðE0Þ2�, is shown in Fig. 4.

By substituting Eq. (68) into Eq. (62), and solving Eq. (62) numerically, one can obtain the

equilibrium length a of the aggregate for a given value of c. As said before, the obtained aspect

ration a/c is independent of the value of c. The result of a/c versus the Mason number is

depicted in Fig. 5. From the log-log plot, we found that a=c / ðMnÞ�0:48. Using the molecular-

like dynamics simulation, Takimoto [21] also revealed such a power-law relation, and the

apparent exponent was approximately equal to �0:5. Through balancing the depolarization
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Fig. 4. The rotational angle as a function
of nondimensional time t� ¼ tc13 for dif-

ferent Mason numbers Mn
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energy of a spheroidal droplet with its surface energy, Halsey et al. [9], [10] obtained that

a=c / Mn�v, and the exponent v ¼ 1=3.

By substituting the equilibrium values of the rotational angle and the aspect ratio into the

expression of Mijkl in Eq. (A2). then into Eq. (51), we obtain the stress and strain rate relation

under simple shear loading condition as

s0
13 ¼ sy

13 þ 2lc0
13 þ

5

3
plNa3c0

13½ð3XM þ ZMÞsin22heq þ 4YMcos22heq�

¼ sy

13 þ 2lc0
13 þ

5

4

/lc0
13

G2 þ F2

a2

c2

� �

½ð3XM þ ZMÞG2 þ 4YMF2�

¼ sy

13 þ 2l�c0
13; ð69Þ

where the viscosity l� of the ER suspension is given by

l� ¼ lþ 5

8

/l
G2 þ F2

a2

c2

� �

½ð3XM þ ZMÞG2 þ 4YMF2�; ð70Þ

where XM ;YM ;ZM are dependent only on the aspect ratio, and are given by Eq. (A4). As shown

in Eq. (66), the functions G and F and the aspect ration a/c depend on the strain rate c0
13 and the

applied electric field ðE0Þ2. Therefore Eq. (70) predicts a shear-thinning viscosity of the ER
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suspension. By substituting the obtained aspect ratio into Eq. (70), one can find the variation of

the reduced suspension viscosity (l� � lÞ=l with the Mason number Mn. The relationship is

plotted in log-log scale in Fig. 6. From the Figure, it can be found that the suspension viscosity

can be well approximated by a power function / ðMnÞ�D with the shear-thinning exponent of

D � 0:82. Rheological measurement by Halsey et al. [9] on a model fluid consisting of

monodisperse silica spheres immersed in a dielectric liquid showed a power-law dependence

l� / ðMnÞ�D of the apparent viscosity on the Mason number with D ¼ 0:68� 0:93.

6 Concluding remarks

In this paper, a microstructural constitutive theory of ER suspensions was formulated. The

framework was based on the internal variable theory and the mechanism analysis. The ER

suspension consists of fine particles with high dielectric constant and the supporting fluid.

Under the action of the electric field, the polarized particles will aggregate together to form the

chain-like structures along the direction of the electric field. The size and orientation of the

particle aggregates are volatile. They will adjust according to the applied electric field and strain

rate. Therefore, a model was established to determine the size and orientation of the aggregates.

Then a three-dimensional, explicit form of the constitutive equation was derived based on the

interaction energy and the dissipation function of the system. The response of the system under

the action of a simple shearing load was considered and discussed in detail. It is found that the

shear-thinning viscosity of an ER suspension can be well approximated by the power-law

/ ðMnÞ�0:82. Since the evolution equation of the aggregate orientation is a loading history

dependent differential equation, after solving it for a given loading history, one can predict the

constitutive behavior of the ER suspension for the loading history.
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Appendix I

The derivation of the tensor D

The stress field on the surface of the aggregate is created by the linear ambient flow field c0
ij, and

rotational movement of the aggregate xi. For a steady creeping flow considered in this paper,

the stress tensor can be obtained by summing up the two microhydrodynamic solutions. We

can express the tensor Dij as follows:

(i) The force dipole D1
ij for linear ambient flow

The force dipole D1
ij is defined as follows:
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D1
ij ¼ �

Z Z

Sp

Y

1

ik

nkxj ds; ðA:1Þ

where
Q1

ik is the stress field on the surface of the aggregation created by linear ambient flow.

For ellipsoidal inclusion, the three fundamental problems – translation, rotation, and linear

ambient field were solved in the paper of Oberbeck, Edwardes, and Jeffery. For a prolate

spheroid aggregate (a > b ¼ c), denoting the unit directional vector along the symmetry axis by

d
*
;D1

ij can be expressed in the form [13]:

D1
ij ¼ Mijklc

0
kl

¼ 4pla3YHeijmemkbdbdl þ
20

3
pla3½XMd

ð0Þ
ijkl þ YMd

ð1Þ
ijkl þ ZMd

ð2Þ
ijkl�

� �

c0
kl; ðA:2Þ

where

d
ð0Þ
ijkl ¼

3

2
didj �

1

3
dij

� �

dkdl �
1

3
dkl

� �

;

d
ð1Þ
ijkl ¼

1

2
ðdidjldk þ djdildk þ didjkdl þ djdikdl � 4didjdkdlÞ;

d
ð2Þ
ijkl ¼

1

2
ðdikdjl þ djkdil � dijdkl þ didjdkl þ dkdldij � didkdjl � djdkdil

� didldjk � djdldik þ didjdkdl;

ðA:3Þ

YH ¼ 4

3
e5½ð1þ e2ÞL� 2e��1;

XM ¼ 8

15
e5½ð3� e2ÞL� 6e��1;

YM ¼ 4

5
e5½2eð1� 2e2Þ � ð1� e2ÞL�f½2eð2e2 � 3Þ þ 3ð1� e2ÞL�½ð1þ e2ÞL� 2e�g�1;

ZM ¼ 16

5
e5ð1� e2Þ½3ð1� e2Þ2L�2eð3� 5e2Þ��1;

L ¼ ln
1þ e

1� e

� �

;

ðA:4Þ

in which e ¼ ða2 � c2Þ1=2=a is the eccentricity of the generating ellipse.

(ii) The force dipole D
ð2Þ
ij for rotational motion of the spheroid aggregate

D
ð2Þ
ij is defined as

D
ð2Þ
ij ¼ �

Z Z

sp

Y

ð2Þ

ik

nkxj ds; ðA:5Þ

where
Qð2Þ

ik is the stress field created by the rotational motion of the aggregate. Using the

solution for spheroidal inclusions, one can express the tensor D
ð2Þ
ij in the following form [13]:

D
ð2Þ
ij ¼ Hijkxk

¼ f4pla3eija½XCdadk þ YCðdka � dkdaÞ� � 4pla3YHðeikldj þ ejkldiÞdlgxk; ðA:6Þ
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where

XC ¼ 4

3
e3ð1� e2Þ½2e� ð1� e2ÞL��1;

YC ¼ 4

3
e3ð1� e2Þ½ð1þ e2ÞL� 2e��1:

ðA:7Þ

Appendix II

The electric field outside a dielectric spheroid under a uniform external field

In the book of Laudau et al. [15], the field potential outside an uncharged conducting spheroid

was expressed in explicit form. Following the similar procedure, we can derive the electric field

potential outside a dielectric spheroid under a uniform external field in explicit form as follows.

In the local coordinate system (XYX) with the X-axis along the symmetry axis of the spheroid,

the external electric field is denoted as fE0
X ;E

0
Y ;E

0
Zg. The electric field potential outside the

spheroid can be expressed in the following form:

/e ¼ /1 þ /2 þ /3; ðA:8Þ

where

/1 ¼ �E0
XX 1þ Ei

X

E0
X

� 1

� �

� tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ=ða2 þ nÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ=ða2 þ nÞ
p

tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2=a2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2=a2
p

( )

;

/2 ¼ �E0
Y Y 1þ Ei

Y

E0
Y

� 1

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 þ nÞ
p

=ðc2 þ nÞ � ða2 � c2Þ�1=2tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ=ða2 þ nÞ
p

a=c2 � ða2 � c2Þ�1=2tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2=a2
p

( )

;

/3 ¼ �E0
ZZ 1þ Ei

Z

E0
Z

� 1

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 þ nÞ
p

=ðc2 þ nÞ � ða2 � c2Þ�1=2tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ=ða2 þ nÞ
p

a=c2 � ða2 � c2Þ�1=2tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2=a2
p

( )

;

ðA:9Þ

where the internal electric field inside the spheroid is given by Eqs. (1) and (3), and the coor-

dinate n is related to X, Y and Z by

Y2 þ Z2

c2 þ n
þ X2

a2 þ n
¼ 1; ðA:10Þ

with 0 � n � 1 in the space outside the spheroid. The electric field outside the dielectric

spheroid can be obtained by

E
*

e ¼ �r
*

/e: ðA:11Þ

Appendix III

The velocity field solution for a spheroid in the linear ambient field v0
i ¼ c0

ijXj

When the spheroidal aggregate reaches its equilibrium state, it will be fixed in the fluid. Under

the action of the linear ambient flow field, the velocity field will change greatly due to the

existence of the fixed spheroid. Jeffery obtained the solution for an ellipsoid long time ago,
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which was shown in the book by Kim and Karrila [13]. For a spheroid, we can reproduce his

solution to the following explicit-form expression:

VL
i ¼ c0

ijXj �
3

32pl
Sjk þ

1

2
ejlkTl

� �

@

@Xk

G1dij � Xj

@G1

@Xi

þ a2
J

4

@2G2

@Xi@Xj

� �

; ðA:12Þ

where

Gn ¼
Z

1

n

X2

a2 þ k
þ Y2

c2 þ k
þ Z2

c2 þ k
� 1

� �n
dk

DðkÞ ; ðA:13Þ

with DðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 þ kÞ
p

ðc2 þ kÞ and the ellipsoidal coordinate n defined as the positive root of

X2

a2 þ n
þ Y2 þ Z2

c2 þ n
¼ 1: ðA:14Þ

Ti;Sij are the torque and stresslet on the spheroid, which are given by

Ti ¼ �8pla3YHeijldkdlc
0
jk;

Sij ¼
20

3
pla3½Xmd0

ijkl þ Ymd1
ijkl þ Zmd2

ijkl�c0
kl:

ðA:15Þ

The definition of the symbols in Eq. (A.15) is the same as that in Appendix I. Since the

symmetry axis is connected with the X-axis, d1 ¼ 1;d2 ¼ d3 ¼ 0.

For a spheroidal aggregate, Eq. (A.12) can be reduced to the explicit form:

G1 ¼ X2I1 þ ðY2 þ Z2ÞI2 � I;

@G1

@Xi

¼ 2XiII ;

@G2

@Xi@Xj

¼ 8XiXjIIJ þ 4dij½X2I1I þ ðY2 þ Z2ÞI2I � II �;

ðA:16Þ

where the following summation convention has been used: repeated lower case indices are

summed up from 1 to 3; upper case indices take on the same number as the corresponding lower

case ones but not summed. And

I ¼
Z

1

n

dk
DðkÞ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2
p arccosh �bb;

I1 ¼
Z

1

n

1

a2 þ k
dk

DðkÞ ¼ 2ðarccosh �bb� �dd= �bbÞ=ða2 � c2Þ3=2;

I2 ¼ I3 ¼
Z

1

n

1

c2 þ k
dk

DðkÞ ¼ ð
�bb �dd� arccosh �bbÞ=ða2 � c2Þ3=2;

I11 ¼
Z

1

n

dk

ða2 þ kÞ2DðkÞ
¼ 2

3
ða2 � c2Þ�1 3

2
I1 �

1

ða2 þ nÞ3=2

" #

;
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I12 ¼ I13 ¼ I21 ¼ I31 ¼
Z

1

n

dk
ða2 þ kÞðc2 þ kÞDðkÞ ¼

2

a2 � c2

3

2
I2 �

1

ða2 þ nÞ1=2ðc2 þ nÞ

" #

;

I22 ¼ I33 ¼ I23 ¼ I32 ¼
Z

1

n

dk

ðc2 þ kÞ2DðkÞ
¼ � 1

2

1

a2 � c2

3

2
I2 �

1

ða2 þ nÞ�1=2ðc2 þ nÞ2

" #

;

ðA:17Þ

where �bb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 þ nÞ=ðc2 þ nÞ
p

and �dd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � c2Þ=ðc2 þ nÞ
p

. Thus for any linear ambient field,

one can express the velocity field around the spheroid in explicit form.
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